News

Home News

Two dimensional tungsten based MXene material for hydrogen production by electrolysis of water

new products

Latest News

June 4,2025.

The 14th Shenzhen International Thermal and Heat Dissipation Materials and Equipment Exhibition (CIME2025)

The 14th Shenzhen International Thermal and Heat Dissipation Materials and Equipment Exhibition (CIME2025) will be held from June 4-6, 2025 at the Shenzhen International Convention and Exhibition Center. The exhibition area is 20000 square meters, wi...

May 29,2025.

Photothermal effect of anti-inflammatory and antioxidant properties Enhanced antibacterial hydrogel promotes infected wound healing

During the healing process of infectious wounds, bacterial infection, persistent oxidative stress, and long-term inflammation are the main obstacles. Developing a multifunctional wound dressing that can effectively eliminate bacteria, reduce oxidativ...

May 29,2025.

Ag2S nanodot based microneedle patch for postoperative melanoma recurrence and infectious trauma treatment

In the surgical treatment of malignant melanoma, incomplete tumor resection and extensive skin defects are the main reasons for high local recurrence rates and uncontrolled wound infections, leading to poor prognosis and prolonged patient recovery ti...

May 29,2025.

Light Stimulated Shuangluo gel for Photothermal Treatment of Cancer

Peptide substances have shown great potential in the field of biomaterials due to their high design flexibility, excellent biocompatibility, and degradability. Peptide based stimuli responsive biomaterials endow them with unique functions in drug del...

April 16,2025.

MXene regulates glycolysis for synergistic treatment of cancer

In recent years, treatment strategies targeting the unique metabolic characteristics of cancer cells, such as aerobic glycolysis, have gradually received attention. Among them, hunger therapy has shown potential therapeutic value by cutting off the g...

April 16,2025.

High air stability MXene biointerface thin film electrode

MXene exhibits excellent ion electron dual conductivity mechanism and has become a promising candidate material for biological interface electrodes. However, the exposed Ti atoms on the MXene layer are prone to oxidation in air, leading to severe deg...

April 16,2025.

Two dimensional tungsten based MXene material for hydrogen production by electrolysis of water

Electrolysis of water to produce hydrogen (HER) is the core technology for obtaining "green hydrogen", but existing precious metal catalysts (such as platinum) are expensive and difficult to apply on a large scale. Scientists are turning their attent...

January 9,2025.

The Chinese government supports the vigorous development of powder metallurgy enterprises

The powder metallurgy industry, as an important component of the new materials field, plays a crucial role in promoting the transformation and upgrading of China's manufacturing industry. Powder metallurgy technology, due to its unique process advant...

November 27,2024.

Rocket microneedle assisted deep drug delivery for combination therapy of melanoma

Melanoma is a highly invasive skin cancer, and its treatment faces challenges such as difficulty in penetrating the skin barrier with drugs and systemic side effects. As a unique transdermal drug delivery method, microneedles have many advantages suc...

November 27,2024.

CREKA Modified Silicone in the Treatment of bladder cancer

Bladder cancer, especially non muscle invasive bladder cancer (NMIBC), is the most common malignant tumor of the urinary system. Although cisplatin based chemotherapy has shown significant clinical efficacy as a first-line treatment, its therapeutic ...

Two dimensional tungsten based MXene material for hydrogen production by electrolysis of water

April 16,2025.
Electrolysis of water to produce hydrogen (HER) is the core technology for obtaining "green hydrogen", but existing precious metal catalysts (such as platinum) are expensive and difficult to apply on a large scale. Scientists are turning their attention to the two-dimensional material MXene.
The currently synthesized MXenes mainly come from MAX phase precursors, and the controlled synthesis of tungsten based MXenes is extremely challenging due to the instability predicted by calculations. Therefore, finding suitable synthesis strategies to prepare efficient HER catalysts still faces many challenges.
On March 28, 2025, the journal Nature Synthesis reported that researchers used theoretical calculations to guide precise etching of covalently bonded tungsten layers, obtaining atomically ordered W2TiC2Tx MXene and solving the problem of interlayer delamination.

In this work, researchers predicted the etching feasibility of tungsten layers in (W, Ti) 4C4 ₋ y through DFT calculations and found that excessive aluminum doping (2Al precursor) can reduce oxygen impurities and promote selective etching. They synthesized ordered double transition metal MXene (W2TiC2Tx) by selectively etching covalently bonded tungsten layers from non MAX layered carbide (W, Ti) 4C4-y precursors using HCl LiF.
Research has shown that the peeled W2TiC2Tx MXene exhibits excellent HER performance, with an overpotential of only 144mV at a current density of 10mA cm-2, far superior to existing W1.33CtX MXene. DFT shows that the hydrogen adsorption free energy (Δ Gad=-0.37eV) of the W-Ti3 coordination site on the tungsten titanium mixed surface is close to thermal neutrality and superior to that of the pure tungsten surface (Δ Gad=-1.79eV).
In addition, the material has a high conductivity of 427 Scm-1 at room temperature, which conforms to the variable range hopping model (VRH), indicating that interlayer electron transport is dominant. Under 800nm femtosecond laser, the material exhibits anti saturation absorption behavior, and its high conductivity and stability make it potentially valuable in optoelectronic and laser applications.
This study breaks through the traditional synthesis paradigm of MXene and provides new ideas for constructing efficient HER catalysts and novel 2D materials.

Literature name: Synthesis of a 2D tungsten MXene for electrocatalysis。


SAT NANO is a best supplier of MXene powder in China, we can offer a series of MXene powder like Ti3C2, Nb2CTx, V2CTx, Mo2CTx, Ti3CN, Mo2CN, Mo2CBx, etc., if you have any enquiry, please feel free to contact us at admin@satnano.com

Leave a message Please click here for inquiry
Provide the right solution according to your needs,offer efficient service,leave a message for the product information and requirements you need,customize now!